Physiological and stem cell compartmentalization within the Drosophila midgut
نویسندگان
چکیده
The Drosophila midgut is maintained throughout its length by superficially similar, multipotent intestinal stem cells that generate new enterocytes and enteroendocrine cells in response to tissue requirements. We found that the midgut shows striking regional differentiation along its anterior-posterior axis. At least ten distinct subregions differ in cell morphology, physiology and the expression of hundreds of genes with likely tissue functions. Stem cells also vary regionally in behavior and gene expression, suggesting that they contribute to midgut sub-specialization. Clonal analyses showed that stem cells generate progeny located outside their own subregion at only one of six borders tested, suggesting that midgut subregions resemble cellular compartments involved in tissue development. Tumors generated by disrupting Notch signaling arose preferentially in three subregions and tumor cells also appeared to respect regional borders. Thus, apparently similar intestinal stem cells differ regionally in cell production, gene expression and in the ability to spawn tumors. DOI:http://dx.doi.org/10.7554/eLife.00886.001.
منابع مشابه
Morphological and molecular characterization of adult midgut compartmentalization in Drosophila.
Although the gut is a central organ of Eumetazoans and is essential for organismal health, our understanding of its morphological and molecular determinants remains rudimentary. Here, we provide a comprehensive atlas of Drosophila adult midgut. Specifically, we uncover a fine-grained regional organization consisting of 14 subregions with distinct morphological, histological, and genetic propert...
متن کاملRegional Control of Drosophila Gut Stem Cell Proliferation: EGF Establishes GSSC Proliferative Set Point & Controls Emergence from Quiescence
Adult stem cells vary widely in their rates of proliferation. Some stem cells are constitutively active, while others divide only in response to injury. The mechanism controlling this differential proliferative set point is not well understood. The anterior-posterior (A/P) axis of the adult Drosophila midgut has a segmental organization, displaying physiological compartmentalization and region-...
متن کاملAll for one and one for all: Regionalization of the Drosophila intestine.
Physiological responses are the ultimate outcomes of the functional interactions and proper organization of the different cell types that make up an organ. The digestive tract represents a good example where such structure/function correlation is manifested. To date, the molecular mechanisms that establish and/or maintain gut segmentation and functional specialization remain poorly understood. ...
متن کاملDrosophila's contribution to stem cell research
The discovery of Drosophila stem cells with striking similarities to mammalian stem cells has brought new hope for stem cell research. A recent development in Drosophila stem cell research is bringing wider opportunities for contemporary stem cell biologists. In this regard, Drosophila germ cells are becoming a popular model of stem cell research. In several cases, genes that controlled Drosoph...
متن کاملIntestinal epithelium-derived BMP controls stem cell self-renewal in Drosophila adult midgut
Stem cells are maintained in a specialized microenvironment called niche but the nature of stem cell niche remains poorly defined in many systems. Here we demonstrate that intestinal epithelium-derived BMP serves as a niche signal for intestinal stem cell (ISC) self-renewal in Drosophila adult midgut. We find that BMP signaling is asymmetric between ISC and its differentiated daughter cell. Two...
متن کامل